Cross-Machine, Multi-Plasma Validation of TGLF on Alcator C-Mod and ASDEX Upgrade

A.J. Creely1, N. Cao1, G.D. Conway2, S.J. Freethy1,2, T. Görler2, R.M. McDermott2, P. Rodriguez-Fernandez1, G. Tardini2, A.E. White1, and the ASDEX Upgrade Team

1Massachusetts Institute of Technology, Plasma Science and Fusion Center, Cambridge, USA
2Max Planck Institute for Plasma Physics, Garching, Germany

The turbulent transport code TGLF [1] is validated using a consistent set of validation constraints on 10 plasma discharges from Alcator C-Mod and ASDEX Upgrade. Traditional turbulent transport validation studies tend to focus in depth on a single plasma discharge on one machine, often due to the large computational resources required for gyrokinetic simulations [2]. The availability of increasingly accurate reduced models such as TGLF, and the ability to launch many runs in parallel using a framework such as VITALS [3], however, enables another approach to validation studies. This study employs a common methodology and set of validation constraints (heat fluxes, electron temperature fluctuations [4, 5], and perturbative diffusivity [6]) to validate TGLF on 10 plasma discharges on two machines. In particular, the study is motivated by recent results on Alcator C-Mod and ASDEX Upgrade suggesting that multi-scale gyrokinetic models are absolutely required to accurately model some plasmas, while ion-scale models are entirely sufficient for other plasmas [7, 8]. To that end, TGLF is validated in both ion-scale and multi-scale configurations, in order to investigate when multi-scale effects are necessary to find agreement with experiment. Multi-scale simulations are shown to agree well with experiment in all cases, while ion-scale simulations agree only for some plasmas. Results so far suggest that ion-scale simulations perform best in cases where turbulence is most strongly driven.

This work is supported by the US DOE under grant DE-SC0006419 and by the US DOD under the NDSEG Fellowship.